
UNIT - 3

❖ software construction

The term software construction refers to the detailed creation of working software through a

combination of coding, verification, unit testing, integration testing, and debugging. The Software

Construction knowledge area (KA) is linked to all the other KAs, but it is most strongly linked to

Software Design and Software Testing because the software construction process involves

significant software design and testing. The process uses the design output and provides an input

to testing (“design” and “testing” in this case referring to the activities, not the KAs). Boundaries

between design, construction, and testing (if any) will vary depending on the software life cycle

processes that are used in a project. Although some detailed design may be performed prior to

construction, much design work is performed during the construction activity.

It is also related to project management, insofar as the management of construction can

present considerable challenges.

The importance of software construction

1) Construction is a large part of software development. Depending on the size of the

project, construction typically takes 30 to 80 percent of total time spent on a project.

2) Construction is the central activity in software development

• Requirement and architecture

• Construction

• System Testing

SOFTWARE CONSTRUCTION FUNDAMENTALS

Software Construction fundamentals includes:

• minimizing complexity

• anticipating change

• constructing for verification

• reuse

• standards in construction.

The first four concepts apply to design as well as to construction. The following sections

define these concepts and describe how they apply to construction.

Minimizing Complexity

Most people are limited in their ability to hold complex structures and

information in their working memories, especially over long periods of

time. This proves to be a major factor influencing how people convey intent

to computers and leads to one of the strongest drives in software

construction: minimizing complexity. The need to reduce complexity

applies to essentially every aspect of software construction and is

particularly critical to testing of software constructions. In software

construction, reduced complexity is achieved through emphasizing code

creation that is simple and readable rather than clever. It is accomplished

through making use of standards, modular design, and numerous other

specific techniques. It is also supported by construction-focused quality

techniques.

Anticipating Change

Most software will change over time, and the anticipation of change drives

many aspects of software construction; changes in the environments in

which software operates also affect software in diverse ways. Anticipating

change helps software engineers build extensible software, which means

they can enhance a software product without disrupting the underlying

structure. Anticipating change is supported by many specific techniques .

Constructing for Verification

Constructing for verification means building software in such a way that

faults can be readily found by the software engineers writing the software

as well as by the testers and users during independent testing and

operational activities. Specific techniques that support constructing for

verification include following coding standards to support code reviews and

unit testing, organizing code to support automated testing, and restricting

the use of complex or hard-to- understand language structures, among

others.

Reuse

Reuse refers to using existing assets in solving different problems. In

software construction, typical assets that are reused include libraries,

modules, components, source code, and commercial off-the-shelf (COTS)

assets. Reuse is best practiced systematically, according to a well-defined,

repeatable process. Systematic reuse can enable significant software

productivity, quality, and cost improvements. Reuse has two closely related

facets:"construction for reuse" and "construction with reuse." The former

means to create reusable software assets, while the latter means to reuse

software assets in the construction of a new solution. Reuse often

transcends the boundary of projects, which means reused assets can be

constructed in other projects or organizations.

Standards in Construction

Applying external or internal development standards during construction

helps achieve a project’s objectives for efficiency, quality, and cost.

Specifically, the choices of allowable programming language subsets and

usage standards are important aids in achieving higher security. Standards

that directly affect construction issues include

• communication methods (for example, standards for document formats and

contents)

• programming languages (for example, language standards for

languages like Java and C++)

• coding standards (for example, standards for naming conventions,

layout, and indentation)

• platforms (for example, interface standards for operating system calls)

• tools (for example, diagrammatic standards for notations like UML

(Unified Modeling Language)).

❖ Object Oriented Principles in OOAD

Object-oriented principles are a set of guidelines for designing and implementing

software systems that are based on the idea of objects. Objects are self-contained

units of code that have both data and behavior. They can interact with each other to

perform tasks.

Object-Oriented Analysis and Design (OOAD) is a software engineering methodology

that uses object-oriented principles to design and implement software systems.

OOAD involves a number of techniques and practices, including:

• Object-Oriented Modelling: This involves using visual diagrams to represent the

different objects in a software system and their relationships to each other.

• Use Cases: This involves describing the different ways in which users will interact

with a software system.

• Design Patterns: This involves using reusable solutions to common problems in

software design.

Important Topics for Object Oriented Principles in OOAD

• Abstraction

• Encapsulation

• Modularity

• Hierarchy

• Typing

• Concurrency

1. Abstraction

Think of a TV remote control. It has buttons like power, volume up, volume down,

and channel change. Now, let's use this as an example of Abstraction

In OOP, abstraction is like using a TV remote without knowing how it works on the

inside. You don't need to know about the wires, circuits, or tiny components inside

the remote. All you care about are the buttons and what they do.

In this example:

• Buttons are like the functions or actions in a program, such as play, pause, or

stop.

• What the buttons do is like the behavior of objects or classes in OOP. For

example, when you press the volume up button, the volume goes up,, but you

don't need to understand how it happens.

So, Abstraction in OOP is about using objects or classes (like our TV remote) without

worrying about how they work internally. You only care about what they can do and

how to use them, just like using a TV remote without needing to be an electrical

engineer to make it work.

Advantages of Abstraction

• Abstraction makes things simpler. It helps us focus on what's important and

ignore what's not, making it easier to understand.

• We can reuse the same template for different things, saving time and making our

work more efficient.

https://www.geeksforgeeks.org/object-oriented-principles-in-ooad/#abstraction
https://www.geeksforgeeks.org/object-oriented-principles-in-ooad/#encapsulation
https://www.geeksforgeeks.org/object-oriented-principles-in-ooad/#modularity
https://www.geeksforgeeks.org/object-oriented-principles-in-ooad/#hierarchy
https://www.geeksforgeeks.org/object-oriented-principles-in-ooad/#typing
https://www.geeksforgeeks.org/object-oriented-principles-in-ooad/#concurrency

• When something goes wrong or needs an update, we can fix just the part that's

broken without messing up everything else.

• Abstraction helps us grow our projects without making them messy.

Disadvantages of Abstraction

• Sometimes, too much abstraction can make things more hard to understand.

• Abstraction can add extra work and code that might slow down our program a

little bit.

• Using abstraction tools can be tricky for beginners.

2. Encapsulation

Let us take an example of a water bottle to explain encapsulation:

• The Bottle: In OOP, a class is like the bottle, with visible features (attributes and

methods) and hidden contents (data and functions).

• The Cap: The cap is like encapsulation. It protects what's inside the bottle (the

object) and keeps it safe from outside interference.

• The Water: Inside the bottle is data, like water. You can use the bottle (object) to

access and modify the data, without needing to know how it's stored or

processed inside.

So, encapsulation in OOP is like a cap on water bottle, keeping the inner workings

hidden and secure. letting you use the object without worrying about its internal

details.

Advantages of Encapsulation

• Encapsulation keeps data safe and prevents unauthorized access or modification.

• It allows controlled access to data through methods.

• You can change the internal workings of an object without affecting the code that

uses it.

• Encapsulation makes code easier to understand and maintain because you only

need to focus on what a class does, not how it does it.

Disadvantages of Encapsulation

• It can add extra layers to your code, making it a bit more complex.

• Encapsulation can sometimes make your code a bit slower because of the extra

control it imposes.

3. Modularity

Modularity in OOAD is like organizing your kitchen. Just as you keep pots in one

cabinet and dishes in another for easier access and maintenance, in OOAD, you

group similar functions and data into organized module or classes. This makes it

simpler to understand and change specific parts of your software without affecting

the entire program, similar to how you can upgrade one appliance in your kitchen

without redoing the whole room.

Advantages of Modularity

• Modularity makes it easier to fix or update one part of a software system with

messing up the rest.

• You can reuse modules in different parts of your software, saving time and effort.

• Multiple programmers can work on different modules simultaneously.

Disadvantages of Modularity

• Overdoing modularity can make your software too complex with many small

parts, making it harder to grasp.

• Breaking a program into modules may add some extra work and slow down the

software slightly.

4. Hierarchy

Lets us take an example of a family. In a family there are grandparents, parents, and

children:

• Classes as Family Members: In OOAD, think of your family members as classes or

objects. Each class has a specific job, like each family members has a role in the

family.

• Family Hierarchy: Just like your family tree has a hierarchy with grandparents at

the top, parents in the middle and children at the bottom, in OOAD classes can

can be organized in a hierarchy. Some classes are more general (like parents) and

others are more specific (like children).

• Inheritance: Imagine your grandparents passing down family traditions to your

parents, who then pass then on to you. This is similar in OOAD where classes can

inherit features from other classes higher up in the hierarchy.

https://www.geeksforgeeks.org/modularity-and-its-properties/

• Specialization: You and your siblings have more specialized roles compared to

your parents. This is like specialization in OOAD, where subclasses have specific

features compared to their parent classes.

So, hierarchy in OOAD is like arranging classes in an organized way, just as your

family tree helps you understand your family's structure. It helps in managing and

understanding the relationships between different classes in a software system.

5. Typing

Typing involves categorizing objects based on their data types (e.g., integers, strings,

custon objects) to ensure they are used appropriately.

Example:

Think about sorting your belongings. You wouldn't mix up your books, clothes, and

kitchen utensils in the same box. Similarly, in programming, you categorize data

based on their data types (e.g., numbers, text, dates) to perform operations correctly.

This helps to prevent errors and make code more readable and maintainable.

6. Concurrency

Concurrency in Object Oriented Analysis and Design (OOAD) is like managing

multiple tasks at at the same time, just as people multitask in every day life.

Imagine you're a chef in a restaurant. You have several orders to prepare, and each

order consists of different dishes. You can't cook one disk at a time and move to the

next dish because customers are hungry and waiting for their food. So, you need to

work on multiple dishes simultaneously

Now, let's relate this to OOAD:

• Tasks as Objects: In OOAD, think of each dish you're cooking as an object or a

task. Each dish has its recipe ad cooking instructions, just like objects have their

method and properties.

• Concurrency in Kitchen: You are working concurrently in kitchen, managing

multiple dishes simultaneously. While one dish is simmering, you might be

chopping ingredients for another or seasoning a third. You switch between tasks

efficiently to serve all orders.

In OOAD, concurrency is about managing multiple tasks or processes within a

software system simultaneously. It's like juggling different tasks efficiently to make

the most of your time.

❖ Object-oriented programming Languages

Object-oriented programming (OOP) is a programming paradigm based on the

concept of objects, which can contain data and code: data in the form of fields (often

known as attributes or properties), and code in the form of procedures (often known

as methods). In OOP, computer programs are designed by making them out of

objects that interact with one another.

Many of the most widely used programming languages (such

as C++, Java, and Python) are multi-paradigm and support object-oriented

programming to a greater or lesser degree, typically in combination with imperative

programming and declarative programming

1. C++ Programming

C++ is an object-oriented programming language. It is an extension to C

programming.

Our C++ tutorial includes all topics of C++ such as first example, control statements,

objects and classes, inheritance, constructor, destructor, this, static, polymorphism,

abstraction, abstract class, interface, namespace, encapsulation, arrays, strings,

exception handling, File IO, etc.

C++ programming language was developed in 1980 by Bjarne Stroustrup at bell

laboratories of AT&T (American Telephone & Telegraph), located in U.S.A.

C++ is a general purpose, case-sensitive, free-form programming language that

supports object-oriented, procedural and generic programming.

C++ is a middle-level language, as it encapsulates both high and low level language

features.

C++ supports the object-oriented programming, the four major pillar of object-

oriented programming (OOPs) used in C++ are:

1. Inheritance

2. Polymorphism

3. Encapsulation

4. Abstraction

Usage of C++

https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Source-code
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Property_(programming)
https://en.wikipedia.org/wiki/Procedure_(computer_science)
https://en.wikipedia.org/wiki/Method_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Multi-paradigm
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-inheritance
https://www.javatpoint.com/cpp-constructor
https://www.javatpoint.com/cpp-oops-concepts

By the help of C++ programming language, we can develop different types of

secured and robust applications:

o Window application

o Client-Server application

o Device drivers

o Embedded firmware etc

C++ Program

File: main.cpp

#include <iostream>

using namespace std;

int main() {

 cout << "Hello C++ Programming";

 return 0;

}

2. Java Programming

Java is an object-oriented, class-based, concurrent, secured and general-purpose

computer-programming language. It is a widely used robust technology.

Java is a programming language and a platform. Java is a high level, robust, object-

oriented and secure programming language.

Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in

the year 1995. James Gosling is known as the father of Java. Before Java, its name

was Oak. Since Oak was already a registered company, so James Gosling and his

team changed the name from Oak to Java.

Java Example

Let's have a quick look at Java programming example. A detailed description of Hello

Java example is available in next page.

Simple.java

https://www.javatpoint.com/java-oops-concepts

class Simple{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

Application

According to Sun Microsystems, 3 billion devices run Java. There are various devices

where Java is currently used. Some of them are as follows:

1. Desktop Applications such as acrobat reader, media player, antivirus, etc.

2. Web Applications such as irctc.co.in, javatpoint.com, etc.

3. Enterprise Applications such as banking applications.

4. Mobile

5. Embedded System

6. Smart Card

7. Robotics

8. Games, etc.

3. Python Programming

Python is a widely used programming language that offers several unique features

and advantages compared to languages like Java and C++. Our Python tutorial

thoroughly explains Python basics and advanced concepts, starting

with installation, conditional statements, loops, built-in data structures, Object-

Oriented Programming, Generators, Exception Handling, Python RegEx, and many

other concepts. This tutorial is designed for beginners and working professionals.

In the late 1980s, Guido van Rossum dreamed of developing Python. The first version

of Python 0.9.0 was released in 1991. Since its release, Python started gaining

popularity. According to reports, Python is now the most popular programming

language among developers because of its high demands in the tech realm.

In February 1991, the first public version of Python, version 0.9.0, was released. This

marked the official birth of Python as an open-source project. The language was

named after the British comedy series "Monty Python's Flying Circus".

https://www.javatpoint.com/how-to-install-python
https://www.javatpoint.com/python-if-else
https://www.javatpoint.com/python-loops
https://www.javatpoint.com/python-strings
https://www.javatpoint.com/python-oops-concepts
https://www.javatpoint.com/python-oops-concepts
https://www.javatpoint.com/python-generators
https://www.javatpoint.com/python-exception-handling
https://www.javatpoint.com/python-regex
https://en.wikipedia.org/wiki/Guido_van_Rossum

Python is a general-purpose, dynamically typed, high-level, compiled and

interpreted, garbage-collected, and purely object-oriented programming language

that supports procedural, object-oriented, and functional programming.

Python Code:

print("Hello World!")

Python Applications

As per a survey it is observed that Python is the main coding language for more than

80% of developers. The main reason behind this is its extensive libraries and

frameworks that fuel up the process

1. Web Development

2. Machine Learning and Artificial Intelligence

3. Data Science

4. Game Development

5. Audio and Visual Applications

6. Software Development

7. CAD Applications

8. Business Applications

9. Desktop GUI

10. Web Scraping Application

❖

Software Testing is evaluation of the software against requirements gathered from

users and system specifications. Testing is conducted at the phase level in software

development life cycle or at module level in program code. Software testing

comprises of Validation and Verification.

Validation:

Validation is process of examining whether or not the software satisfies the user

requirements. It is carried out at the end of the SDLC. If the software matches

requirements for which it was made, it is validated.

• Validation ensures the product under development is as per the user

requirements.

• Validation answers the question – "Are we developing the product which

attempts all that user needs from this software ?".

• Validation emphasizes on user requirements.

Verification:

Verification is the process of confirming if the software is meeting the business

requirements, and is developed adhering to the proper specifications and

methodologies.

• Verification ensures the product being developed is according to design

specifications.

• Verification answers the question– "Are we developing this product by firmly

following all design specifications ?"

• Verifications concentrates on the design and system specifications.

Classification of Software Testing:

Software Testing can be broadly classified into two types:

✓ Manual:

 This testing is performed without taking help of automated testing tools. The

software tester prepares test cases for different sections and levels of the code,

executes the tests and reports the result to the manager.

 Manual testing is time and resource consuming. The tester needs to confirm

whether or not right test cases are used. Major portion of testing involves manual

testing.

✓ Automated:

This testing is a testing procedure done with aid of automated testing tools. The

limitations with manual testing can be overcome using automated test tools.

Testing approaches:

Tests can be conducted based on two approaches –

1. Functionality testing/Black-box testing:

➢ The technique of testing in which the tester doesn’t have access to the source

code of the software and is conducted at the software interface without any

concern with the internal logical structure of the software is known as

blackbox testing.

➢ It is carried out to test functionality of the program. It is also called

‘Behavioral’ testing.

➢ In this testing method, the design and structure of the code are not known to

the tester, and testing engineers and end users conduct this test on the

software.

Black-box testing techniques:

i. Equivalence class :

The input is divided into similar classes. If one element of a class passes the test, it is

assumed that all the class is passed.

ii. Boundary values :

The input is divided into higher and lower end values. If these values pass the test, it

is assumed that all values in between may pass too.

iii. Cause-effect graphing:

In both previous methods, only one input value at a time is tested. Cause (input) –

Effect (output) is a testing technique where combinations of input values are tested

in a systematic way.

iv. Pair-wise Testing :

The behavior of software depends on multiple parameters. In pairwise testing, the

multiple parameters are tested pair-wise for their different values.

v. State-based testing :

The system changes state on provision of input. These systems are tested based on

their states and input.

2. Implementation testing/White-box testing:

➢ The technique of testing in which the tester is aware of the internal workings of

the product, has access to its source code, and is conducted by making sure that

all internal operations are performed according to the specifications is known as

white box testing.

➢ It is conducted to test program and its implementation, in order to improve code

efficiency or structure. It is also known as ‘Structural’ testing.

➢ In this testing method, the design and structure of the code are known to the

tester. Programmers of the code conduct this test on the code.

White-box testing techniques:

I. Control-flow testing - The purpose of the control-flow testing to set up test

cases which covers all statements and branch conditions. The branch

conditions are tested for both being true and false, so that all statements can

be covered.

II. Data-flow testing - This testing technique emphasis to cover all the data

variables included in the program. It tests where the variables were declared

and defined and where they were used or changed.

❖ Unit Testing

Unit Testing is a software testing technique in which individual units or components

of a software application are tested in isolation. These units are the smallest pieces

of code, typically functions or methods, ensuring they perform as expected.

Unit testing helps in identifying bugs early in the development cycle, enhancing

code quality, and reducing the cost of fixing issues later. It is an essential part

of Test-Driven Development (TDD), promoting reliable code.

Unit testing is the process of testing the smallest parts of your code, like individual

functions or methods, to make sure they work correctly. It’s a key part of software

development that improves code quality by testing each unit in isolation.

Unit testing strategies

To create effective unit tests, follow these basic techniques to ensure all scenarios

are covered:

• Logic checks: Verify if the system performs correct calculations and follows the

expected path with valid inputs. Check all possible paths through the code are

tested.

• Boundary checks: Test how the system handles typical, edge case, and invalid

inputs. For example, if an integer between 3 and 7 is expected, check how the

system reacts to a 5 (normal), a 3 (edge case), and a 9 (invalid input).

• Error handling: Check the system properly handles errors. Does it prompt for a

new input, or does it crash when something goes wrong?

• Object-oriented checks: If the code modifies objects, confirm that the object’s

state is correctly updated after running the code.

Benefits of unit testing

Here are the Unit testing benefits which used in the software development with

many ways:

1. Early Detection of Issues: Unit testing allows developers to detect and fix issues

early in the development process before they become larger and more difficult

to fix.

2. Improved Code Quality: Unit testing helps to ensure that each unit of code works

as intended and meets the requirements, improving the overall quality of the

software.

3. Increased Confidence: Unit testing provides developers with confidence in their

code, as they can validate that each unit of the software is functioning as

expected.

4. Faster Development: Unit testing enables developers to work faster and more

efficiently, as they can validate changes to the code without having to wait for

the full system to be tested.

5. Better Documentation: Unit testing provides clear and concise documentation of

the code and its behavior, making it easier for other developers to understand

and maintain the software.

6. Facilitation of Refactoring: Unit testing enables developers to safely make changes

to the code, as they can validate that their changes do not break existing

functionality.

7. Reduced Time and Cost: Unit testing can reduce the time and cost required for

later testing, as it helps to identify and fix issues early in the development

process.

Disadvantages of Unit Testing

1. Time and Effort: Unit testing requires a significant investment of time and effort

to create and maintain the test cases, especially for complex systems.

2. Dependence on Developers: The success of unit testing depends on the

developers, who must write clear, concise, and comprehensive test cases to

validate the code.

3. Difficulty in Testing Complex Units: Unit testing can be challenging when dealing

with complex units, as it can be difficult to isolate and test individual units in

isolation from the rest of the system.

4. Difficulty in Testing Interactions: Unit testing may not be sufficient for testing

interactions between units, as it only focuses on individual units.

❖ Integration testing

Integration testing is the process of testing the interface between two software

units or modules. It focuses on determining the correctness of the interface. The

purpose of integration testing is to expose faults in the interaction between

integrated units. Once all the modules have been unit-tested, integration testing is

performed.

Integration testing is a software testing technique that focuses on verifying the

interactions and data exchange between different components or modules of a

software application. The goal of integration testing is to identify any problems or

bugs that arise when different components are combined and interact with each

other. Integration testing is typically performed after unit testing and before system

testing. It helps to identify and resolve integration issues early in the development

cycle, reducing the risk of more severe and costly problems later on.

Approaches of Integration Testing

Incremental integration testing can be further divided into 3 smaller approaches,

each also comes with its own advantages and disadvantages that QA teams need to

carefully consider for their projects. These approaches are named based on the level

of impact of the software components being integrated have on the overall system,

including:

• Bottom-up approach: perform testing for low-level components first, then

gradually move to higher-level components.

• Top-down approach: perform testing for high-level components first, then

gradually move to lower-level components.

• Hybrid approach: combining the two former approaches

To better understand these 3 concepts, we must first define low-level components

and high-level components.

https://www.geeksforgeeks.org/software-testing-techniques/

Applications of Integration Testing

1. Identify the components: Identify the individual components of your application

that need to be integrated. This could include the frontend, backend, database,

and any third-party services.

2. Create a test plan: Develop a test plan that outlines the scenarios and test cases

that need to be executed to validate the integration points between the

different components. This could include testing data flow, communication

protocols, and error handling.

3. Set up test environment: Set up a test environment that mirrors the production

environment as closely as possible. This will help ensure that the results of your

integration tests are accurate and reliable.

4. Execute the tests: Execute the tests outlined in your test plan, starting with the

most critical and complex scenarios. Be sure to log any defects or issues that

you encounter during testing.

❖ System testing

System testing is a type of software testing that evaluates the overall functionality

and performance of a complete and fully integrated software solution. It tests if the

system meets the specified requirements and if it is suitable for delivery to the end-

users. This type of testing is performed after the integration testing and before the

acceptance testing.

System Testing is a type of software testing that is performed on a completely

integrated system to evaluate the compliance of the system with the corresponding

requirements. In system testing, integration testing passed components are taken

as input.

• The goal of integration testing is to detect any irregularity between the units

that are integrated. System testing detects defects within both the integrated

units and the whole system. The result of system testing is the observed

behavior of a component or a system when it is tested.

• System Testing is carried out on the whole system in the context of either

system requirement specifications or functional requirement specifications or

the context of both. System testing tests the design and behavior of the system

and also the expectations of the customer.

• It is performed to test the system beyond the bounds mentioned in the software

requirements specification (SRS) . System Testing is performed by a testing team

that is independent of the development team and helps to test the quality of

the system impartial.

• It has both functional and non-functional testing. System Testing is a black-box

testing . System Testing is performed after the integration testing and before

the acceptance testing.

Types of System Testing

• Performance Testing: Performance Testing is a type of software testing that is

carried out to test the speed, scalability, stability and reliability of the software

product or application.

• Load Testing: Load Testing is a type of software Testing which is carried out to

determine the behavior of a system or software product under extreme load.

• Stress Testing: Stress Testing is a type of software testing performed to check

the robustness of the system under the varying loads.

• Scalability Testing: Scalability Testing is a type of software testing which is

carried out to check the performance of a software application or system in

terms of its capability to scale up or scale down the number of user request

load.

https://www.geeksforgeeks.org/software-testing-basics
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs
https://www.geeksforgeeks.org/software-engineering-quality-characteristics-of-a-good-srs
https://www.geeksforgeeks.org/performance-testing-software-testing
https://www.geeksforgeeks.org/software-testing-load-testing
https://www.geeksforgeeks.org/stress-testing-software-testing
https://www.geeksforgeeks.org/software-testing-scalability-testing

❖ Test Driven Development (TDD)

Test Driven Development (TDD) is a software development practice where

developers write automated tests before writing the actual code that needs to be

tested. Developers create unit test cases before developing the actual code. It is an

iterative approach combining Programming, Unit Test Creation, and Refactoring.

The process follows a repetitive cycle known as Red-Green-Refactor.

1. Red Phase: First, a developer writes a test that defines a desired feature or

behavior (the “Red” phase, as the test will fail initially).

2. Green Phase: Then, they write the minimum code necessary to pass the test

(the “Green” phase).

3. Refactor: Finally, the code is refactored for optimization while ensuring the

test still passes.

TDD helps ensure that the codebase remains reliable and bug-free by catching errors

early in the development process. It promotes better design decisions, as writing

tests first forces developers to think more clearly about the functionality they are

implementing.

Furthermore, because tests are an integral part of the development process, TDD

leads to higher code coverage and makes future modifications or refactoring easier

and safer, knowing that existing functionality is thoroughly tested.

• The TDD approach originates from the Agile manifesto principles and Extreme

programming.

• As the name suggests, the test process drives software development.

• Moreover, it’s a structuring practice that enables developers and testers to

obtain optimized code that proves resilient in the long term.

• In TDD, developers create small test cases for every feature based on their

initial understanding. The primary intention of this technique is to modify or

write new code only if the tests fail. This prevents duplication of test scripts.

Test Driven Development (TDD) Examples

Here are some of the examples where TDD is used:

1. Calculator Function: When building a calculator function, a TDD approach

would involve writing a test case for the “add” function and then writing the

code for the process to pass that test. Once the “add” function is working

correctly, additional test cases would be written for other functions such as

“subtract”, “multiply” and “divide”.

2. User Authentication: When building a user authentication system, a TDD

approach would involve writing a test case for the user login functionality and

then writing the code for the login process to pass that test. Once the login

functionality works correctly, additional test cases will be written for

registration, password reset, and account verification.

3. E-commerce Website: When building an e-commerce website, a TDD

approach would involve writing test cases for various features such as product

listings, shopping cart functionality, and checkout process. Tests would be

written to ensure the system works correctly at each process stage, from

adding items to the cart to completing the purchase.

Three Phases of Test Driven Development

1. Create precise tests: Developers need to create exact unit tests to verify the

functionality of specific features. They must ensure that the test compiles so

that it can execute. In most cases, the test is bound to fail. This is a meaningful

failure as developers create compact tests based on their assumptions of how

the feature will behave.

2. Correcting the Code: Once a test fails, developers must make the minimal

changes required to update the code to run successfully when re-executed.

3. Refactor the Code: Once the test runs successfully, check for redundancy or

any possible code optimizations to enhance overall performance. Ensure that

refactoring does not affect the external behavior of the program.

The image below represents a high-level TDD approach toward development:

https://www.browserstack.com/guide/unit-testing-a-detailed-guide

Benefits of Test Driven Development (TDD)

1. Fosters the creation of optimized code.

2. It helps developers better analyze and understand client requirements and

request clarity when not adequately defined.

3. Adding and testing new functionalities become much easier in the latter

stages of development.

4. Test coverage under TDD is much higher compared to conventional

development models. The TDD focuses on creating tests for each functionality

right from the beginning.

5. It enhances the productivity of the developer and leads to the development of

a codebase that is flexible and easy to maintain.

